Frequency and Time Domain Analysis of Influence of the Grounding Electrode Conductivity on Induced Current Distribution

نویسندگان

  • Silvestar Šesnić
  • Dragan Poljak
چکیده

The paper deals with an assessment of the influence of finite conductivity to the current induced along the horizontal grounding electrode. Analysis is performed in frequency and time domain, respectively. Current distribution along the grounding electrode buried in a lossy half-space is determined via analytical solution of the corresponding Pocklington equation in the frequency domain. The corresponding time domain response is obtained by means of Inverse Fast Fourier Transform (IFFT). The electrode is excited via an equivalent current source. Presence of the earth-air interface is taken into account via the simplified reflection coefficient arising from the Modified Image Theory (MIT). The electrode current is calculated for the case of perfectly conducting (PEC) electrode and for the electrodes made of copper and aluminum. Comparison of results shows no significant discrepancy between these electrodes, justifying the use of a PEC electrode approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison between modal damping ratios identified by NExT-ERA and frequency domain impact test

In this research, the modal parameters of a beam in free-free condition are extracted by performing different experiments in laboratory. For this purpose, two different techniques are employed. The first methodology is considered as a time domain method in Operational Modal Analysis. While the other one is frequency domain impact hammer test which is categorized as an Experimental Modal Analysi...

متن کامل

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

A Probabilistic Three-Phase Time Domain Electric Arc Furnace Model based on analytical method

An electric arc furnace (EAF) is known as nonlinear and time variant load that causes power quality (PQ) problems such as, current, voltage and current harmonics, voltage flicker, frequency changes in power system. One of the most important problems to study the EAF behavior is the choice of a suitable model for this load. Hence, in this paper, a probabilistic three-phase model is proposed base...

متن کامل

Electric Fields of Grounding Electrodes: Frequency and Time Domain Analysis

This paper investigates the influence of frequencydependent electrical soil parameters on underground electric fields associated to the dispersion of lightning currents through grounding electrodes. Results show that the frequency dependence of the soil parameters leads to strong attenuation and distortion of the calculated transient electric fields. It is also shown that both features become m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013